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To understand how enzymes work is essential for understanding life processes. And, in enzyme kinetics, a
fundamental assumption is the so-called Quasi-Steady-State Assumption, which has the history of more than
80 years and has been proven very fruitful in analyzing the equations of enzyme kinetics. Many experimental
results and numerical results have shown the validity of the assumption. So, an important problem is if it is
always true. If it is always true, then it should be a law, not only an assumption. In this paper, we prove
mathematically rigorously that it is indeed always true. Hence, it is a law, and we name it the Quasi-Steady-
State Law. Actually, more precisely, we have two Quasi-Steady-State Laws. In one of them quasi-steady
state means that the concentration of the enzysubstrate complex remains approximately constant, and in

the other it means that the change rate of the concentration of enmguhstrate complex is extremely tiny.

1. Introduction %P = kC (5)
Enzymes are involved in almost all the reactions of life

processes and play vital roles in them, so understanding howwith the initial condition

enzymes work is essential to the understanding of life procésses.

Enzyme kinetics, as an important branch of enzymology, is the (5(0), E(0), C(0), P(0)) = (S, By, 0, 0) (6)

study of the rates of chemical reactions that are catalyzed by

enzymes. It has attracted century-long investigation and is no Under the two conservation laws

less important now than it was early in the twentieth century.

Because enzyme Kkinetics is a branch of chemical kinetics, it E+C=E @)
can be characterized by some differential equations by the
principles of chemical kinetics. Here we consider the simplest S+C+P=§ (8)

case that the kinetics of single substrate S and single product P
reactions catalyzed by enzyme E, which can be described byequations 25 are equivalent to the following equations
the following scheme

& S= —kSE+ K (E— E) ©)
k K
E+S<=C—P+E (1) ]

—1

o E=—KkSE+ (k_; + k)(E, — E) (10)

where k; is the rate constant of formation of the enzyme

substrate compleXs—; is the rate constant of dissociation of with the initial condition §0), E(0)) = (S, Eo). For brevity,

the enzyme-substrate complex, ankb is the catalysis rate  we only consider egs 9 and 10 in this paper.

constant. In this case, on the basis of the law of mass action For the reason that these eqs 9 and 10 cannot be integrated
the time evolution of concentrations of reactants can be explicitly, Michaelis and Mentehproposed equilibrium as-
determined by the following nonlinear differential equatiéns: sumption in 1913. They assumed tlkat > k, therefore

d SE_ Ky
G S= ~kSE+k,C ) C & (11)
d This means that an equilibrium is established between E, S,
G E= "kSEF (k1 +k)C (3) and the enzymesubstrate complex C, the slow step is the
breakdown of C to produce P and E. Under this assumption,
the time evolution of the reactant concentrations in scheme (1)
d can be calculated explicitly.
G G kSE- (ki Tk)C 4) In 1925, Briggs and Haldah@ointed out that the Michaelis

assumption that an equilibrium exists between E, S, and C is
not always justified and should be replaced by the assumption
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Here we give a more detailed description of Briggs’ steady-  Although much strong evidence for the validity of QSSA has
state assumption by quoting the statement in Voet's famous text-been provided from the point of experiment and approximate
book? With the exception of the initial stage of the reaction, solutions as mentioned in the above two paragraphs, they cannot
which is usually over within milliseconds of mixing Eand S, C ensure that this assumption is also true in undone experiments
remains approximately constant until the substrate is nearly or numerical computations. Hence there is naturally a
exhausted. Hence, the rate of synthesis of C must equal its rate Question Is QSSA always true for any group of reaction
of consumption over most of the course of the reaction. In other rate constants or if it is only true for the reaction rate constants
words, C maintains a steady state and can be treated as &atisfying some conditions? If it is always true, then it would

constant value: be not only an assumption but also a law.
The answer to this question cannot be given by experiments
d C=0 (12) or numerical solutions of differential equations, because all these
dt concern only finite groups of concrete reaction rate constants,

This so-called steady-state assumption (SSA) is a more not all possibilities _Of 'the constants. . ) .
Moreover, as said in ref 23, numerics can sometimes give

general condition than that of equilibrium. Furthermore, it is ' . >
usually referred to as quasi-steady-state assumption or quasi.SGFIOUSW misleading results; hence, although the famous Lorenz

steady-state approximation (QSSA) for the fact that attractor has been generated on computers by numerical ap-
proximations since 1963, the rigorous proof given by Tucker

d C~0 (13) in 1999 is still hugely significant and has become a worldwide
d =~ striking eveng1-23
) Thus if one can answer this question completely, the answer
over the most course of the reaction corresponds to eq 12. Bycan be given only by a rigorous mathematical proof. There have
QSSA, the classic MichaetisMenten equation been some significant applications of mathematics to biology,
V.S such as the pioneering application of game theory to evolution
—__ma (14) by Maynard Smith and the study of deterministic chaos into
Kuwt$S ecology done by Robert May. For brevity, we do not list all
. . ) the details. Those who want to know more can refer to
is obtained, where&/max = koEo, Ky = (k-1 + ko)/k; is the references 2427.
Michaelis constant ando denotes the initial velocity of the The qualitative theory of dynamical systems has been
reaction. _ _ developed for more than 100 ye&fdviany talented mathemati-
Since the work of Briggs and Haldane in 192QSSA has  ¢jang made their contributions to its developri@nt? In this
become a fundamental assumption in enzyme kinetics. It hascenyry-long period, the qualitative theory of dynamical systems
been proven very fruitful in the analysis of egs 9 and 10, yielding 45 peen applied to many field&% But it seems that none of

approximate analytical solutions and simple parameter estima-,q published papers has tried to analyze QSSA by such a theory
tion schemed. 1% The application of QSSA in biochemical i, the past 82 years.

kinetics allows the reduction of a complex biochemical system
with an initial fast transient into a simpler o&®Therefore, this
kind of simplification can be used in the study of system biology
such as metabolic processes and genetic regulation prodésses
for all these processes involving enzyme catalysis.

All the experimental results about enzyme kinetics so far show
that the quasi-steady-state assumption or the Michaklenten
equation provides a highly satisfactory description of enzyme
kinetics for large ensembles of enzyme molecules when the con-
centration of substrate greatly exceeds that of enZyAtethe
single-molecule level, an enzyme molecule undergoes rapid
thermal fluctuation and reacts stochastically with substrate
molecules due to its incessant collisions with the solvent mole-
cules™12However, by the statistical analysis of the stochastic
behavior of single-molecule enzyme catalysis, the Michaelis In this section, we first repeat the quasi-steady-state assump-
Menten equation is still satisfidetl 13Therefore, QSSA is high-  tion as stated in the famous textbcbldnder the physiologically
ly satisfied in all known experiments not only at the assembly common condition that substrate is in great excess over enzyme
level of enzyme molecules but also at the single-molecule level. (So > Eg), the enzymesubstrate complex C remains ap-

Despite the high consistency of QSSA with known experimen- proximately constant until the substrate is nearly exhausted with
tal results, the validity of QSSA had not been discussed until an exception of the transient initial stage of the reaction.
the work of Segét* and the work of Segel and Slemré&din The above description about QSSA means @at constant
which a conditionEy < & + Ky was given for QSSA. After for along time. And in the applications of QSSA, one often uses
that, Borghans et af proposed tQSSA by a simple change of d/dt C ~ 0 instead ofC ~ constant But C ~ constantin a
variable and extended the parameter domain in which QSSA isperiod and d/tiC ~ 0 in the same period are not equivalent in
valid. Schneft proposed a closed form solution for the total time general.C ~ constantcannot ensure didC ~ 0, because did
evolution of the reactant concentrations in scheme (1), and SchenelC may oscillate frequently. Conversely, 8/€@ ~ 0 cannot
et all” found a necessary criterion that ensures the validity of ensureC ~ constantither, becaus€ may change significantly
rQSSA. All these previous work provided approximate analytical as time goes by.
solutions by employing the quasi-steady-state approximation and Correspondingly, we reexpress the QSSA in the following
showed that these approximate solutions were very close to thetwo versions. The first is, under the condition®f> Ep, C ~
numerical solutions of eqs-25 with initial condition (6). constanuntil the substrate is nearly exhausted with an exception

Vo

Hence we have made an attempt. Surprisingly, our attempt
is completely successful. So we are very glad and cannot help
admiring the gifted insights and excellent experimental tech-
'niques of biologists in the meanwhile.

Because we can prove that the quasi-steady-state assumption
is always valid under the conditio® > Ep, we call it quasi-
steady-state law from now on. All our proofs can be well
understood by those who have the undergraduate level calculus
background. Moreover, the analyzing technique used in our
proof should be able to apply to other more complex schemes
of enzyme kinetics.

2. Quasi-Steady-State Laws
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of the transient initial stage of the reaction. The second is all
the same to the first b@ ~ constants replaced by ddC ~ 0.
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Notice thatL; andL; are the hyperbola®Q(S, E) = 0 andP(S,
E) = 0 with S= 0, respectively, and they intersect each other

To be more precise, we appeal to mathematical language andat the point (OEo) (see the top panel of Figure 1). From system

state them as

Quasi-Steady-State Law 1 Given any small positive
numbere > 0, there is a proper positive numbiérsuch that
C(t) will go upward from 0 at = 0 to Eg — ¢ in a period less
thane, then it will stay in the interval betweef, andEp — ¢
until t)/S < €, if S > U.

Quasi-Steady-State Law 2 Given any small positive
numbere > 0, there is a proper positive numbérsuch that
|d/dt C(t)| will be less thare after a fast initial period less than
€ and keep this state unt(t)/S < ¢, if S > U.

In the above two lawss can be any positive number which
depends on the requirement of the experiments. For example,
can be 0.1 or 0.01 or even smaller. So the statement<that
~ constantand d/d C ~ 0 are characterized B — € < C(t)
< Epand|d/dt C(t)|] < ¢, respectively. And the conditions that
Sy > Epand S is nearly exhausted are describe&py U and
St)/S < e, respectively.

No matter how smalt is, if a suitableU is chosen to make
sureS > U, then we could ensure both QSSL 1 and QSSL 2
for any reaction rate constants. Of course, the criteria for
choosingU is related toEy, €, and the reaction rate constants.

3. Rigorous Proof of QSSL 1
According to section 1, the basic enzyme kinetics can be
described by the egs 9 and 10, namely the equation system

d

?jt
GE=QSH

S=P(SE)
(15)

where

P(SE) = —k,SE+ k_;E, — k_;E
Q(S.B = —KSE+ (k_; + k)Eg — (ko + k)E

Let (St), E(t)) be the solution of the system (15) with initial
condition §0), E(0)) = (S, Eo).

The system (15) has a unique finite equilibrium pointk&g),
Considering the linear part of system (15) at the pointgy),
that is

ds- KES-K,E-E)
d-_
ot E=—kES— (kT K)E—-E)

(15), it is easy to deduce that

%Sz P(SE) <0
] (17)
— = <
G E= QB <0
in the regionRy,
de_
a S=P(SE) <0
. (18)
GE=QAsH >0
in the regionRy,
[ d
a S=P(SE) <0
d_ B (29)
5= ASB =0
on the curvel; and
[ d
at S=P(SE)=0
g (20)
— = >
& F = QsH) > 0

on the curvel,.

The corresponding vector fields can be deduced by the
systems of eqs 1720 (see the top panel of Figure 1).

Lemma 1. The solution §t), E(t)) of system (15) will arrive
at the curvel; at some timelp > 0.

Proof : First, we prove that(t), E(t)) will actually arrive
at the hyperbol&Q(SE) = 0, where d/tl E = 0. Otherwise,
there exists a positive numbgr> 0 such thatQ(S(t),E(t)) <
—u for allt > 0. ThereforeE(t) would decrease to zero at some
time to, which is less tharfey/u. However, d/t E = Q(Sto),0)
= (k-1 + kp)Eo > 0 at timet = tp, contradicting the fact that
d/dt E = Q(S(t),E(1)) < —u.

Then let the arrival time b&y. If §To) = 0, the proof is
complete. IfTo) < O, thenE(To) > Eo by the hyperbolic
property ofL,. Therefore, there must exist some<0t < T
such that d/dE(t) > O for the initial valueE(0) = Ey. This
contradicts the fact that d/&(t) < 0 for 0 < t < Tp. Hence the
solution §t), E(t)) of system (15) will arrive aL; at some
time To > O.

Lemma 2 E(t) andS(t) decrease monotonously and o)
increases monotonously with respect foom t = 0 until (St),
E(t)) arrives atl;.

the eigenvalues of this linear system are two unequal negative 'pyoof- Because the solutiors(t), E(t)) of system (15) starts

real numbers. Thus the equilibrium point @) of the system
(15) is a stable nodal poift.

At first, we describe some notations that will be used
frequently below. Let, Ly, Ry, andR; be the point sets (see
the top panel of Figure 1)

L,={(SE): Q(SE)=0,Sz 0}

L,={(SE): P(SE)=0,S> 0}

R, ={(SE): E>E (SE) eLy}
R,={(SE): E>E>E (SE)eL; (SE) Ly

from (S, Eo) in Ry att = 0, E(t) and St) will decrease
monotonously until §t), E(t)) arrives al_; by inequalities (17).
In addition,
d2

d—tzE

= —KEP(SE) — (k;S+ k_; + k,)Q(SE) > 0
for (S E) in the regionR;. Thus, d/d E(t) will increase
monotonously until §t), E(t)) arrives atl;.

By inequalities (19), the solution$(t), E(t)) crossesL;
horizontally once it arrives at; at the timeT,. Then, ),
E(t)) will stay in the regionR, permanently and approach the
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—— S E)=D
——PE.E=0

N T TTE™ '

trajectories start from different points

T T T
—— {8, E}=0
= P{5, E}=0
start from (4, 5)
start from (8, 5)
start from (12, 5)
start from (15, 5) V4
start from (20, 5) ¥,

10 1I2 |I4 1I5 1I8 20
S

Figure 1. Top: Q(SE) = 0 andP(P,E) = 0 hyperbolas, which intersect each other at the poinEgd,L; andL, are the two hyperbolas wit8

> 0, respectivelyR; is the region abové,, andR; is betweerl; andL,. The arrows show the vector fields of dynamical system (15). Bottom:
some trajectories of dynamical system (15) starting from different points, which are calculated by computers with pakamededsk, = 0.2,

kfl =0.1.

50 OE) (Sy Ep)
——Q(5,E)=0
4 —P(S.E}=0
5 the trajectory
w
2- (S(t,)e)
I e —— -
: - - —
] 2 4 & 8 10 12 14 16 18 20
S
1.6 0.4
1.4 0.38
1.2 (s.) 0.36
w w
1 0.34
(Stt) )
0.8 4 0.32
0.6 0.3
3 3.6 4 4.5 & 13 135 14 14.5 15

S

S

Figure 2. Depiction of proof to make it more readable. Parametéis= 0.3,k; = 0.2,k-; = 0.1,Ep = 5, S = 20, ande = 1. Q(SE) = 0 and

P(SE) = 0 are two hyperbolas, which are red and blue, respectively. The green curve shows the trajectory of the S@)utdt)) (of system (15),

which starts from &, Eg) and goes across the hyperb@éSE) = 0 horizontally, and then goes toward @) in the regionR.. The top panel

shows the global trajectory and the corresponding hyperbolas. To see it clearly, the corresponding parts of the top panel are amplified as the lower
left and lower right panelsSt1), €) and §t.), €) are the intersections of the trajectory and Ilbe= ¢, wheret; < t,. (S, €) is the intersection of

line E = € and hyperbol@Q(SE) = 0. Furthermore, under the given parameters mentioned above, we;a@3437376f, = 14.102563 J(t1)

= 15.816376, and(t;) = 3.568946.

stable nodal point (0&o) from the inequalities (18)(20) (see
Figure 2). Thus, the following lemma has been proved.
Lemma 3. Both E(t) andS(t) will decrease until §t), E(t))
horizontally crossek; and enters the regidry. After that, §t),
E(t)) will stay in R, and not attacl; or L, forever. In the region

R, St) decreases ar(t) increases continuously. At lasg(f),
E(t)) will approach the point (OE).

In the low panel of Figure 1, there are some solutions starting
from different initial points. All these solutions evolve like what
Lemma 3 states.
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The next lemma shows that the time elapsed [iit)
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QSSL 1 Given anye > 0, there exists a propeay; such

decreasing to any given level can be less than any given timethat if § > U, E(t) will decrease to a level less thanin a

if S is chosen large enough.

Lemma 4: Given Ey and anye > 0, there exists a proper

positive numbellJo. If S > Uy, E(t) will decrease to a level
less thare in a period less thas.
Proof: ChoosingEge > 0, Q(S E) = —Egle defines a

period less thar and keep the state th&(t) < ¢ until St)
decreases to a level less the.

Proof: According to Lemma 4, there isldy such thate(t)
will decrease to a level less tharin a period less thas, if &
> Uo. And according to Lemma E(t) = ¢ has two different

hyperbola. To make sure that this hyperbola separates the poinsolutionst; andt, wheret; < t, (see Figure 2). According to

(S, Eo) and the curve,, it must restrict
1
> =
S e (21)

By this restriction, the solutior§(t), E(t)) of system (15) must
cross the hyperbol@(S E) = —Ey/e before arriving at the curve
L;. Denote byt the time to make the solutionS{), E(t))
intersecting with the curv€(S, E) = —Ede, that is Q(St.),
E(t.)) = —Edle, thenQ(S(t), E(t)) < —Eole for 0 < t < t.. Hence,

S 22

< — =
=g =e (22)

€

Comparing the egs 9 and 10 yields

ds
dt

And by integrating each side of (23) from 0 tg it gets

+Ky(E, — E) = dE 23)

t. dE
y = fo £+ ke, - E)]dt<£) +kE]dt

So,E(t) — Eo = St.) — S + keEote. Therefore,

)= kG B0 ~Eo= Sl ~Eo

due to the inequality (22). On the hyperb@¥SE) = —Egle,
if

E k , +k k., +k
55 B (Gt Ktk 25
kq€e ke Ky
then
E<e (26)
Now, by the inequalities (21), (24), and (25), we have that if
$=
By | katk)E kitk 1
m [62 + klé - kl + kZEOE + EO' k_16
(27)
it must have
E(t) <e€ (28)
Let
Ug=
Eo  (kitk)B kitk 1
ma>{;€2 + kl€ - kl + k2E06 + EO' k_l€
(29)

Then, if S > Uy, E(t) will decrease to a level less thann a
period less tham.

Lemma 3 and Lemma 4, the lite= ¢ intersects the hyperbola
Q(SE) = 0 at the point §, €) such thats > St) (see the low
left panel of Figure 2). Thus

k_, + k)(E, —
s < 5= P (30)

Thus, a choice of

U, = ma>{ Uy, ot kz)(on - 6)] (31)
ke

whereUy is defined by (29), completes the proof.

4. Rigorous Proof of QSSL 2

To prove QSSL 2, we need to consider the second-order
differential equation concerning derived from the system (15).
Let V = dC/dt.

Then
oV _dc
dt dt?
V+(k; +k)C
=k(-V-kCO)(E,—-C) ——F——=<—"V-—

E,— C
(ky TRV

andC(0) = 0, V(0) = kiS(0)E(0) — (k-1 + k2)C(0) = kiSEo.
Thus, we get the system

dc _

@Y

v V+ (k. +ky)C
G V- kO(E - C) T g-c V°

k., +k)V
(ky + 2)(32)

with initial condition (C(0), V(0)) = (0, kiSEo).

We now consider the vector fields on the plabeV, just
like considering that of system (15) on the ple&8ieE. Because
0 < E(t) = Epfor anyt, it appears that & C(t) < Eo. Therefore,
it is enough to consider the vector fields of the system (32) in
the region 0< C < E,. Letting dv/dt = 0 yields

V2 + (ky(C — Eg)® + k4B, + kEg)V + Ckky(C — Eo)2(=3 3()))

Regarding (33) as a quadratic equatiorVpthen the discrimi-
nant of this equation is

A = (ky(C — Eo)® + k1o + kEg)® — 4Ckiky(C — E)®

Note thatCk;ko(C — Eg)? have the same sign in the region<0
C < Ep. According to system (15), & C(t) < Ep for t = 0.
Thus, it is enough to consider the case @ < E,. Therefore,
if A > 0, the eq 33 ol has two negative solutions when<0
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C < Eg. WhenC = Ep, A = E02 (k_l + k2)2 > 0. Thus, the
equation ofV has two solutions. One is zero and the other is
negative. It is the same wheh= 0. Actually, when 0< C(t)
=B

A(C) = (ky(C — Eg)* + k_4Ey + k,Eg)* — 4Ckky(C — E)®

> k(C — Ep)* + k_,’Ey + k,’Ey” + 2k (C —
E0)2k71Eo + 2k(C — Eo)zszo +
2k_;EgkoEq — 4k ky(C — Eo)2

= (Ky(C — B’ — kEg)” + K_,By” + 2ky(C — c
E))’k_1E; + 2K 4EgE,
>0
BecauseA is a continuous function dt, A is bigger than 0
in a neighborhood of the interval [&o]. Consider the bigger o
one of the solutions of the eq 33 in the neighborhood of the “— *_
interval [0, Eq], that is — . -
V,(C) = =,k C* — Yk Ey? + K E,C — Yok ,E, — :
l/2k2Eo + 1/2(_8k1k2E02C + 10<1sz0C2 + 2|(1k—1EoCZ - Figure 3. Key: green curves, shape o¥fit = O; red curve, solution
4k.E2k .C + 6k 2E02C2 — 4k ZEOC3 — ACESC + of system (32); arrows, vector fields of the phase plane.
10 ™1 1 1 1 =0
2klk,1E03 + 2k1k2E03 + 2k,lk2E02 + k12C4 + k12E04 + By this restriction, the solutior§(t), E(t)) of system (15) must

cross the hyperbol@(SE) = —2Ey/e before arriving at the curve
K "Eg? + KBy — 4kik,C)M2 L;. Denote byt. the time to make the solutionS), E(t))
intersect with the curv€)(S, E) = —2Ey/e, that is,Q(S(t.), E(
To consider the approximate shape of this solution on the phaset.)) = —2Ede, then Q(St), E(t)) < —2Ede for 0 < t < t.

plane, the first and second derivative\bivith respect taC at Hence,

point C = Eg should be considered. The first-order derivative

is equal to 0 aC€ = Eo. The second-order derivative is equal to t < 5 € (36)
—2kiko(k-1 + k) at C = Ep. Thus, Vy(C) is concave in the ‘2R, 2

neighborhood ofC = Eo. Namely, there i) > 0 such that e

V1(C) is concave wheitg — 0 < C < Ep+ 6 andC = Eg is
the critical point. ThusV;(C) increases with respect © on By integrating each side of (23) from O tg one gets
the interval Eg — 9, Eg] andV3(C) < 0 for C € (Eo — 9, Eo). dE
WhenV > 0 and 0= C < Eo, dV/dtis less than 0. Onthe [ S=t = ﬁ) By E, - E)] ot < j(‘) 9S4 e
curve given by the eq 33Midt = 0 and C/dt =V < 0. In the t
interval (0, Eg) of the C axis, dC/dt = 0 and d//dt < 0. Thus, So,E(t) — Ep < St) — S + keEqt.. Therefore,
the vector fields in the regiod > 0 and 0< C < Ep and in the
region near the pointg, 0) are obtained. . . € N _ €
Choosee < ¢. As discussed in the proof of QSSL @(t) = =% kZEOZ TRl ~ Bz S kh, 2 Fo
Eo — E(t) is bigger tharEy — e whent; <t < tzif > Uo. In (37)

the phase plan€—V, the integral curve cannot intersect the qye to the inequality (36). On the hyperb@ESE) = —2E/e, if
curve d//dt = 0 while Ep — 6 < C < Ey (see Figure 3).

Therefore, &/dt < 0 whilet < t,. That is to sa 4 2(k_; t k k ,+k
2. y SZ—E.;-i- (k_y 22)Eo_ 17 K (38)
) ke ke K,
dE
— > (34)
dt? then
2
whent < t,. E<<$ (39)
Lemma 5 GivenEpande > 0, there existd),. If S > Uy, 2
lg/adrt] E(t)| will decrease to a level less thann a period less Now, by the inequalities (35), (37), and (38), we have that if
€.
Proof: Choosing E¢e > 0, Q(S E) = —2Ey/e defines a 4B, 2k, +k)E, k., +k
hyperbola. To make sure that this hyperbola separates the poin = Mmax — + -

3 2
(S, Eo) and the curvd.;, we restrict ko€ kye Ky
KE, 5 ‘+E . (40)
2 05 0 1
S e (35)

it must have
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N

€

Et) < (41)
Let
4 2(k_, + k ko, +k
0, 2oy A OBkt
ki€ ki€ Ky

on + B, —] (42)

Then, if S > U,, E(t) will decrease to a level less thaf2 in
a period less thaa/2.

So far, the only thing left is to prove thid/dt E(t)| will go
down to a level less than in a period less thar. By the
inequality (41), d/tlE(t) < —e cannot last longer thae?/2/e =
€/2 from t. until |d/dt E(t)] < e. Therefore,|d/dt E(t)] will
decrease to the level less thain a period less thaa.

Now it is easy to prove

QSSL 2 Given anye > 0, there exists a propays; such
that if § > Us, |dE/dt (t)| will decrease to a level less tharin
a period less thaa and keep the state thatE(t)/dt| < e until
S(t) decreases to a level less the®.

Proof: According to Lemma 5, i > U, |dE/dt (t)], will
decrease to a level less tharin a period less than. Further
more, according to Lemma 3 and Lemm&#) < s = ((k—1
+ kz)(Eo — 6))/k1€, if S > Uo.

If dE/dt (t) < € (see Figure 4 for instance), the&/dt (t) <
e for all t < t, and|dE/dt (t)| < ¢ is kept in the time interval
betweene andt, by (34). Hence, a choice of

0= ma >{ (ks + K)(E — 9

2
kq€

» Uo, Uz] (43)

whereUp and U, are defined by (29) and (42), respectively,
completes the proof.

If dE/dt (t) > € (see Figure 5 for instance), thef&/dt (t, —
1) < e

By integrating each side of the eq 23 over the intertal [
ta],

t ‘i'fd N d5+ ky(E, — E(t))] dt

In virtue of this,

E(t,) — E(t) = S(t,) — S(ty) + ; ko(Eo — E(V) clt
= Sty — Sty + kE(t, — 1)
BecauseE(t)) = E(ty) = €

Sty) — St)

OE (44)

tLL—1,=

According to Lemma 4, i > Uy, E(t) will be less thare at
time t,, which meand, > t;. Thus

St) > St) = § — kEge —E
From inequalities (44), (45), and (30), it is obtained that

(kg + k)(Eg — €)
> S — koEoe — Eg——— |(26E0 -
1

(45)

I(kEo)
(46)
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Therefore E(t) < ¢ lasts for a period more than

(k_qy + K)Ey —
(s)—szoe—Eo— e
1

E’)/(sza

whenS > Ug. Thus, if

(kg T k)(Ep—€)
+
ke

S > ma){ 1+ )k, +

Eo + koEee, Uo}

E(t) < ¢ lasts for a period more than (t €). Thent, > 1+ t;
+ e.

Hence, &/dt (t) < eforallt < t; — 1 and|dE/dt ()| < € is
kept in the time interval betweenandt, — 1 by (34).

By integrating each side of eq 23 frotn— 1 toty, it yields

t, dE
o = jz 5 45 e, - E(t))] dt
Thus,
Elt) —Et,—1)=3t) - St,— 1)+
t:
7 (B — E(D) ot
< §t) - S, — 1)+ kE,
Rearranging the terms in the above inequality yields
S(tz - 1) < S(tz) + szo + E(tz - l) - E(tz)
< s+ kE,
(kg T K)(E —€)
= ke + k,E,
So, a choice of
k_, +k —€
U,= ma>{(1+ e)k2E0+( . ;)E(EO n E, +
1
k ,+k -
KoEge, = 2)(2E0 & * 2_E0 »Ug, Uyp (47)
ke

whereUy and U, are defined by (29) and (42), respectively,
completes the proof.

Consider thatUz defined by (47) is always larger than that
defined by (43), we will use (47) as the default low bound of
S for QSSL 2.

5. Examples

In section two, we proposed two laws in enzyme kinetics,
named by QSSL 1 and QSSL 2, respectively. And the proofs
of these two laws were given in sections 3 and 4. In this section,
we give some numerical examples to make our laws and their
proofs more readable.

5.1. Example I.As stated in QSSL 1, for any small positive
numbere, we can choose a proper positive numkhrsuch
that C(t), that is,Eq — E(t), goes from 0 tdgp — € in a period
less thare and then stays in the interval betweenandEy —
euntil SB)/S < ¢, if > Uy

In our proof, we give arJ; explicitly by (31).
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Figure 4. Parametersk; = 2, k, = 0.2,k-; = 0.1,Eo = 5, S = 20, ande = 0.3. The top panel shows that the trajectory sequentially crosses line

E = ¢, hyperbolaQ(SE) = —¢, line E = ¢, and hyperbol®(SE) = ¢ at time 0.0892893, 0.1950208, 13.432252, and 15.345701, respectively, and

the corresponding intersections are (15.238097, 0.3), (14.8948, 0.059821), (2.18855, 0.3), and (0.784883, 0.641792). To see it clearly, we amplif
the corresponding parts of the top panel as the lower left and lower right panels.

T T T T T T T
—— (S, E} = D
— P(S,E)=0
ar =S, E) =¢
———— 5 E) =
the trajectory

5_

E=¢

0.05
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0.02

0.01

0
14 142 144 146 148 15
S

Figure 5. Parametersk; = 15,k; = 1, k-1 = 0.1,Eo = 5, S = 20, ande = 0.3. The top panel shows that the trajectory sequentially crosses line

E = ¢, hyperbolaQ(SE) = —e¢, hyperbolaQ(SE) = ¢, and lineE = ¢ at time 0.011592, 0.035041, 2.642929, and 2.913193, respectively, and the
corresponding intersections are (15.26009, 0.3), (14.870496, 0.025875), (2.107647, 0.15895), and (0.956045, 0.3). To see it clearly, hee amplify t
corresponding parts of the top panel as the lower left and lower right panels.

In the following numerical example, we assume that a single- By eq 7, we have that(t) goes toward from 0 to 0.4 in a
substrate-single-product reaction described by (1) has rate period of time less than 0.1, and then it stays in the interval
constantsk; = 0.3, k; = 0.2, andk-; = 0.1. Meanwhile, we [0.4, 0.5] untilS(t) = 3.9499413274517567, which is less than
give Ep = 0.5 as the initial concentration of enzyme to catalyze Se = 20. Thus, this numerical example is completely consistent
this reaction. with QSSL 1.

If we chooses = 0.1, thenU, = 171.1767. Hence, choosing If some much smalle¢ was chosen, for example,= 0.01,

S =200> 171.1767 produces(t) that goes fronky = 0.5 to then a low bound oy is U; = 16716. So, when the initial
0.0988 in time 0.0273 (see Figure 6), and then it stays in the concentration of substra® > 16716,C(t) goes toward from
interval [0, 0.1] untilS(t) < 3.9499413274517567 (see Figure 7). 0 to 0.49 in a period less than 0.01, and then it stays in the
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Figure 6. Top: concentrations of substra&drom time 0 to 0.1. Bottom: concentrations of enzyB@ the same period of time. The red point
is at time 0.0273 witte = 0.0988.
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Figure 7. Concentration of enzyme E in the interval [0, 0.1] for the majority of the reaction. It leaves this intervaB#h8r0499413274517567.

interval [0.49, 0.5] untilS(t) < Se = 0.01S,. Here, we do not By our proof, ife = 0.1 is chosen, thekl; = 6766.2 is a
give this numerical example explicitly for simplicity, those who low bound ofS, for QSSL 2. In our numerical experiment by
are interested can verify it themselves. choosingS = 6770, which is larger thatl; = 6766.2,|d/dt

5.2. Example II. As stated in QSSL 2, for any small positive  C(t)| goes to a level less than 0.1 in a period of time less than
numbere, we can choose a proper positive numhgrsuch 0.1 (see Figure 8). Then, it holds this state, thatd&it C(t)|
that |d/dt C(t)| goes to a level less thanafter a period less =< 0.1, in the rest of the reaction (see Figure 9). Thus, this
thane, and keep this state un®(t)/S < ¢, if S > Us. numerical example is completely consistent with QSSL 2.

In the proof of QSSL 2, we give ads explicitly by (47).

For convenience, we use the same reaction as in Example |,
which means that the rate constants are the same. Again, The Quasi-Steady-State Assumption is a fundamental as-
0.5 is used to catalyzed this reaction. sumption in enzyme kinetics. As is proved by all the experiments

6. Conclusion
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Figure 8. Top: global variation of d/dC(t) from time O to 0.1. Bottom: amplified region near the intersection, from which we clearly see that
d/dt C(t) goes to a level less than 0.1 in a period less than 0.1.
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Figure 9. Top: whole trajectory of (@/dt, S) in our numerical experiment. Bottom: amplified version of the top panel, from which we find that
dC/dt stays in the interval{0.1, 0.1] once it comes in.

up to date, it provides a highly satisfactory description of enzyme-substrate complex is extremely tiny in the major part
enzyme kinetics for large ensembles of enzyme molecules of the reaction process, i.e., the part after the initial transient
when the concentration of substrate greatly exceeds that ofstage of the reaction and before the substrate is nearly exhausted.
enzyme. These two versions are independent, and one cannot be deduced
In this article, we reexpressed QSSA in two versions. The from the other.
first is: under the condition that the substrate is in great Furthermore, we proved that both these versions of QSSA
excess over enzymeS{ > Ep), the enzymesubstrate are always true by the qualitative theory of dynamical systems.
complex remains approximately constant in the major part of Because the reaction equations are based on the law of mass
the reaction process, i.e., the part after the initial transient stageaction, which is the fundamental law of chemical kinetics, and
of the reaction and before the substrate is nearly exhausted. Theur proofs are mathematically rigorous, it is reasonable to call
second is: under the condition that the substrate is in greatthem laws. And we name them Quasi-Steady-State Law 1 and
excess over enzymes{ > Eg) again, the changing rate of Quasi-Steady-State Law 2, respectively.
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So far, to prove a law in chemistry or biology by mathematics
seems still novel, but we believe that such things will occur
more and more.
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